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I. SUPPLEMENTARY NOTE 1: SINGLE-PHOTON EFFICIENCY AND PURITY

In this section, we present the characterization of our single-photon source efficiency and purity.
To characterize the efficiency of our Rydberg single-photon source, we create Rydberg excitation by driving a

collective Rabi oscillation between states |G⟩ and |R⟩, and measure ηd, the probability of detecting a single photon
per experimental cycle. Supplementary Figure 1 displays ηd as a function of the Rabi oscillation driving time t, at
the repetition rate of 20 kHz. As a result of Rydberg blockade among N atoms, the two-photon Rabi frequency is
collectively enhanced by a factor of

√
N . The effective number of atoms N ≈ 440 is extracted from a fit to the

data in Supplementary Figure 1. With a π-excitation, a peak probability of photoelectric detection ηd = 0.1035(5)
is obtained by averaging the number of photon counting events registered by the SPCM during every single-photon
readout. Considering the SPCM detection efficiency ξd = 0.73(1) and the overall optical transmission ξt = 0.47(2),
which includes the losses of optical elements, AOM diffraction efficiency and fiber coupling efficiency, we estimate
the single-photon generation efficiency η = ηd/(ξtξd) = 0.30(1). The single-photon generation rate R is proportional
to η and the experimental repetition rate. Higher repetition rate can increase R but also reduce the generation
efficiency η due to atomic loss. Single-photon generation rate as high as R = 5.42(24)× 104 s−1 can be achieved with
a repetition rate of 200 kHz. The single-photon generation efficiency is currently limited by the finite matter-light
quantum conversion efficiency and by the decoherence during the Rydberg excitation and storage. The matter-light
conversion efficiency can in principle be improved by increasing the OD. However, high density could cause severe
density-dependent dephasing. Indeed, we have observed a faster dephasing rate with higher atomic density in the
current experiment. Ideally, integrating the experiment with a low to medium finesse optical resonator could improve
the conversion efficiency while maintaining a low atomic density and longer coherence times.

The high purity of our single photons is guaranteed by the strong van der Waals interactions between the high-
lying Rydberg atoms which effectively suppress multiple excitations within the blockade radius rb. For the Rydberg
state |90S1/2, J = 1/2,mJ = 1/2⟩ used in the experiment, the blockade radius is rb ≈ 15µm. The waists of the
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Supplementary Figure 1. Characterization of the Rydberg single-photon source efficiency. Probability
of detecting a single photon per experimental trial ηd is shown as a function of Rydberg excitation time t. The solid
curve is a fit based on many-body Rabi oscillation.

Rydberg excitation and dipole trap beams are chosen such that the entire excitation region is within the Rydberg
blockade radius and only single excitation is allowed. To characterize the purity of the generated single photons, a
Hanbury Brown-Twiss (HBT) experiment is performed to measure the second-order intensity correlation function at
zero delay g(2)(0) of the single photon. The read-out laser converts the Rydberg single excitation into a high-quality
single photon, which is coupled into a 50:50 fiber beam splitter and detected by a pair of SPCMs with lower dark-
count rates. The quantum statistics of the single-photon field is then obtained by analyzing the distribution of the
photoelectric detection events

g(2)(τ) =
p12(τ)

p1(0)p2(τ)
, (1)

where p1 and p2 are the photoelectric detection probabilities of each SPCM, and p12(τ) is the probability of coincidences
between two SPCMs with delay τ . The value of second-order intensity correlation function at zero delay, g(2)(0), is
a direct measure of single-photon purity, since g(2)(0) is zero for an ideal single photon. Besides residual multi-
photon events, background detection events also contribute to the non-zero g(2)(0) measured in the HBT experiment.
In order to suppress the background detection events to SPCMs dark-count level, we employ a pair of PBSs for
polarization filtering, a 12.5 nm bandwidth filter and a Fabry-Perot etalon for frequency filtering, and a single-mode
fiber for spatial filtering, which bring extra loss of about 0.62(3). To further increase the signal-to-background ratio
of photoelectric detection, a 200 ns detection gating window, which contains 94% of photons around the center, is
applied to reduce the dark counts per trial. The measured second-order intensity correlation function at zero delay
is g(2)(0) = 7.5(6)× 10−4, indicating near-unity single-photon purity. Given that the probability of coincidences
between two background detection events is negligible, the contribution of background detection events to g(2)(0) is
given by pB1 /p1 + pB2 /p2 = 2.7(2)× 10−4, where pB1 and pB2 are the probabilities of background detection events for
the SPCMs. Considering the contribution from background detection events, we extract the background-corrected
second-order intensity correlation function g

(2)
cor(0) = 4.8(6)× 10−4.

II. SUPPLEMENTARY NOTE 2: SINGLE-PHOTON INDISTINGUISHABILITY

In this section, we present detailed description and analysis of Hong–Ou–Mandel (HOM) experiment to investigate
the two-photon quantum interference and characterize the photon indistinguishability.

The two photons used in the HOM experiment are sequentially generated from the Rydberg atoms with an interval
of 5µs, and temporally matched by a polarization switching electro-optic modulator (EOM) and a 1 km delay fiber
(See Supplementary Figure 2). Good temporal mode-matching between the two-photon wave packets is a prerequisite
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Supplementary Figure 2. Timing sequence for HOM experiment. The single-photon generation protocol is
executed twice in every experimental cycle with a delay of 5µs. To ensure the temporal wave-packet matching of
two photons, a polarization switching EOM and a 1 km fiber are used to delay the first photon by 5µs. The
temporal mismatch ∆t between two photons is varied to measure the HOM dip in Fig. 2b.

for high interference visibility. We characterize the temporal mode-matching with a wave-packet overlap function

(∫ ∞

0

|ψ∗
1(t)ψ2(t)|dt

)2

=

(∫∞
0

√
I1(t)I2(t)dt

)2

∫∞
0
I1(t)dt

∫∞
0
I2(t)dt

, (2)

where ψ1(t) and ψ2(t) are the temporal mode functions of two photons, and I1(t) and I2(t) are their intensity
distributions over time. We measure I1(t) and I2(t), and obtain a wave-packet overlap function with the value of
99.946(8)% for 200 ns detection window and 99.970(11)% for 80 ns detection window. Moreover, we analyze the
wave-packet overlap function with a temporal mismatch ∆t, (

∫ √
I1(t)I2(t+∆t)dt)2, and find its dependence on ∆t

can be well approximated with a Gaussian function, which is also used to fit the data in Fig. 2b in the main text.

Supplementary Figure 3. Experimental setup of the Hong–Ou–Mandel interference. Two photons in
orthogonally polarized states |H⟩ and |V⟩ are combined on the PBS 1 and transformed to circularly polarized states
|L⟩ and |R⟩ before PBS 2. Four Glan-Taylor polarizers are employed to ensure high polarization extinction ratios. A
pair of SPCMs are used to measure the two-photon interference visibility.

Having two single photons with an excellent temporal overlap at hand, we proceed to the implementation of the
HOM experiment, as shown in Supplementary Figure 3. In order to fine tune the beam splitting ratio to be precisely
50:50, we build a HOM setup in which two single photons with orthogonal circular polarizations interfere at a PBS.
Using Glan-Taylor polarizers, two single photons are prepared in linearly polarized states |H⟩ and |V⟩ with high



4

polarization extinction ratios and then combined at PBS 1. After being rotated to circularly polarized states |R⟩ and
|L⟩, two single photons interfere at PBS 2 and are detected by a pair of SPCMs. Two more Glan-Taylor polarizers
and single-mode fibers (not shown) are used before the SPCMs to suppress the polarization crosstalk and provide
spatial filtering, respectively.

The HOM interferometer establishes an input-output relation of(
t̂H
r̂V

)
=

1√
2

(
1 i
i 1

)(
âL
âR

)
, (3)

where âL (âR) represents the left (right) circularly polarized input mode, and t̂H (r̂V) represents the transmitted
(reflected) output mode. When two single photons with left and right circular polarizations arrive at PBS 2 simulta-
neously, the HOM interference results in a transformation of â†Lâ

†
R → −i(t̂†Ht̂

†
H + r̂†Vr̂

†
V)/2. Ideally, two single photons

should appear together at the same output port, and the probability of coincidence between different ports should be
zero. However, background detection events, single-photon impurity, photon indistinguishability and imperfections
of optical components lead to non-zero coincidences, and thus reduce the HOM interference visibility.

As mentioned in the main text, we find that the reduction of indistinguishability from the unit at zero delay is
mainly due to the imperfect interference from photon components in the rising and falling edges of the single-photon
temporal profile. Here, we study this effect by performing the HOM experiment with different photon detection
windows Td, as shown in Supplementary Figure 4. Our single photon has a temporal profile with a full width at half
maximum (FWHM) of about 100 ns. As the detection window decreases from 200 ns to 80 ns around the center, the
HOM visibility (indistinguishability) at zero delay is improved from 99.43(9)% (99.55(9)%) to 99.87(8)% (99.94(8)%),
although their wave-packet overlap function has a negligible difference. These results suggest the possibility of the
phase chirps in the rising and falling edges of the single-photon temporal profile. With the 80 ns detection window,
62% of the photons in the single-photon wave packet are detected and the g(2)(0) is improved from 7.5(6)× 10−4

(200 ns window) to 4.5(6)× 10−4 due to a better signal to background ratio. From a single-photon application point
of view, it is ideal to apply a proper detection window that: (1). gives high signal-to-background ratio, photon purity
and interference visibility; (2). contains a large percentage of the photons. Therefore, we use the 200 ns detection
window for most of the single-photon characterization measurements and employ the 80 ns detection window for the
implementation of the CNOT gate.

Supplementary Figure 4. Single-photon properties with different detection windows. a, The visibility of
HOM interference at zero temporal delay V (0) as a function of detection window Td; b, The photon
indistinguishability as a function of detection window Td; c, The percentage of the single-photon wave-packet Pd
that falls into the detection window Td; d, The Second-order intensity correlation function at zero delay g(2)(0) as a
function of detection window Td. The error bars in (a), (b) and (d) represent 1σ standard deviation.

In principle, the imperfect interference in the edges can be compensated, so a larger detection window and higher
single-photon detection efficiency can be achieved. While the photon counting measurement employed here only gives
the amplitude distribution of the single-photon wave packet, a homodyne detection setup could provide the complex
temporal profile of the single photon, including the phase information. We plan to implement such a homodyne
detection protocol to extract phase distribution inside the single-photon profile to investigate the possible phase
chirps. The phase chirps can in principle be compensated by optimally controlling the phase of the 479 nm read-out
field. However, it goes beyond the scope of the current work.

Now we proceed to the analysis of HOM interference visibility with 80 ns detection window. The visibility of
HOM quantum interference is given by V (t) = 1 − C(t)/C(∞), where C(t) is the measured probability of two-
photon coincidence with a temporal delay t, and C(∞) is the expected probability of coincidence if two photons are
completely distinguishable. We evaluate C(∞) by inputting the left and right circularly polarized single photons
separately. From the photoelectric detection probabilities of the transmitted (reflected) photons pLt = 0.006275(20)
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(pLr = 0.006576(21)) and pRt = 0.002281(12) (pRr = 0.002406(13)), we have C(∞) = pLt p
R
r + pLr p

R
t = 3.010(13)× 10−5.

At zero temporal delay, we obtain a minimal probability of coincidences C(0) = 4.0(23)× 10−8 and a maximal HOM
interference visibility V (0) = 99.87(8)%. Next, we analyze the major mechanisms that cause reduction of the HOM
interference visibility, and extract the indistinguishability of our Rydberg single-photon source.

Visibility reduction due to background detection events. The background detection events, which mainly
consist of dark counts from SPCMs, contribute to the undesired coincidences in the HOM experiment. Similar to
the analysis in Section I, the probability of detecting coincidence caused by background per experimental trial is
ptp

B
r + prp

B
t , where pt (pr) represents the photoelectric detection probability of the transmitted (reflected) photons

and pBt (pBr ) is the probability of background detection events from the SPCM in the transmitted (reflected) output
port. These undesired coincidences decrease the HOM interference visibility from unity by

∆Vbg ≈ ptp
B
r + prp

B
t

pLt p
R
r + pLr p

R
t

= 0.034(8)%, (4)

where pt = 0.008280(11), pr = 0.008671(11), pBt = 4.7(18)× 10−7 and pBr = 7.3(22)× 10−7.
Visibility reduction due to single-photon impurity. The multi-photon components of our single-photon

source, characterized by g(2)(0), also cause a reduction of interference visibility. The multi-photon components
increase the probability of coincidence by

⟨r̂†V t̂
†
Ht̂Hr̂V⟩ =

⟨â†Lâ
†
LâLâL⟩+ ⟨â†Râ

†
RâRâR⟩+ ⟨â†Lâ

†
LâRâR + â†Râ

†
RâLâL⟩

4
, (5)

where the third expectation value is zero since the phases of two input modes âL and âR are unrelated. The reduction
of interference visibility due to multi-photon components is then given by

∆Vimpurity =
⟨â†Lâ

†
LâLâL⟩+ ⟨â†Râ

†
RâRâR⟩

2 ⟨â†LâL⟩ ⟨â
†
RâR⟩

=
ηL
2ηR

g
(2)
L (0) +

ηR
2ηL

g
(2)
R (0) = 0.036(10)%. (6)

Here, ηL (ηR) is the probability of having a photon in the input mode âL (âR), and the intensity ratio between them
is ηL/ηR = 2.045(3). Since the two single photons used in the HOM experiment are generated from the same source,
g
(2)
L (0) is identical to g(2)R (0), which is measured in Section I with the value of 2.9(8)× 10−4.
Visibility reduction due to imperfect optical elements. The imperfections of optical elements in the HOM

experiment also contribute to the measured coincidences. The imperfections of half-wave plates (HWP) and quarter-
wave plates (QWP) induce a deviation of the interferometer beam splitting ratio from 50:50, characterized by ϵq, and
lead to a modified input-output relation

(
t̂H
r̂V

)
=

 √
1+ϵq
2 i

√
1−ϵq
2

i
√

1−ϵq
2

√
1+ϵq
2

(
âL
âR

)
. (7)

Additionally, the finite extinction ratios of transmission and reflection at PBS 2, denoted by 1 : ϵ2t and 1 : ϵ2r , result in
a polarization crosstalk between two output modes. The above-mentioned imperfections reduce the HOM interference
visibility by

∆Voptics ≈ 2
⟨r̂†V t̂

†
Ht̂Hr̂V⟩+ ϵ2r ⟨t̂

†
Ht̂

†
Ht̂Ht̂H⟩+ ϵ2t ⟨r̂

†
Vr̂

†
Vr̂Vr̂V⟩

⟨â†LâL⟩ ⟨â
†
RâR⟩

= 2(ϵ2q + ϵ2r + ϵ2t ) = 0.005(7)%, (8)

where ϵq = 0.0049(37), ϵr = 0.001186(2) and ϵt = 0.000730(1) are measured with coherent laser light.
Photon indistinguishability. In order to characterize the indistinguishability of two input photons, we introduce

an additional right circularly polarized mode â′R, which does not interfere with âL, and rewrite the input mode âR as√
1− ϵdâR+

√
ϵdâ

′
R, where ϵd quantifies the two-photon distinguishability. The HOM intereference visibility reduction

due to the distinguishable input mode â′R is given by

∆Vd ≈ 2
⟨r̂′†V t̂

†
Ht̂Hr̂

′
V⟩+ ⟨r̂†V t̂

′†
H t̂

′
Hr̂V⟩

⟨â†LâL⟩ ⟨â
†
RâR⟩

=
⟨â′†Râ

†
LâLâ

′†
R⟩

⟨â†LâL⟩ ⟨â
†
RâR⟩

= ϵd, (9)

where t̂′H (r̂′V) is the transmitted (reflected) distinguishable output mode.
By subtracting the visibility reduction due to background detection events (0.034(8)%), single-photon impurity

(0.036(10)%), and imperfect optical elements (0.005(7)%) from the measured HOM interference visibility V (0) =
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Td = 80 ns Td = 200 ns Td = 300 ns Td =400 ns

Percentage of the single-photon wave-packet in Td 62% 94% 99% 99.9%

Visibility reduction due to background detection events 0.034(8)% 0.051(7)% 0.075(8)% 0.101(8)%

Visibility reduction due to single-photon impurity 0.036(10)% 0.061(10)% 0.071(11)% 0.077(11)%

Visibility reduction due to imperfect optical elements 0.005(7)% 0.005(7)% 0.005(7)% 0.005(7)%

HOM visibility 99.87(8)% 99.43(9)% 99.13(10)% 98.91(11)%

Photon indistinguishability 99.94(8)% 99.55(9)% 99.28(10)% 99.09(11)%

Supplementary Table 1. Photon interference visibility and indistinguishability for different detection
window Td

99.87(8)%, a photon distinguishability of ϵd = 0.06(8)% is extracted. We estimate that the indistinguishability of
our Rydberg single-photons source is 1− ϵd = 99.94(8)%.

We also analyze the HOM data for 200 ns detection window. Besides finite photon indistinguishability, the HOM
visibility is also reduced by the following sources: 0.051(7)% from the background, 0.061(10)% from single-photon
impurity, and 0.005(7)% from the imperfect optical elements. From the measured HOM visibility V (0) = 99.43(9)%,
we extract a indistinguishability of 1 − ϵd = 99.55(9)% for 200 ns detection window. We summarize the results in
Supplementary Table 1.

III. SUPPLEMENTARY NOTE 3: HIGH FIDELITY PHOTON-PHOTON QUANTUM LOGIC GATE

High-fidelity photon-photon quantum logic gate lies at the heart of scalable quantum architectures such as photonic
quantum computers1–3 and all-optical quantum repeaters4,5. The simplest quantum operation relying on photon-
photon interactions is the two-photon quantum logic gate, e.g., the CNOT gate. Since the strong single-photon-level
nonlinearity is difficult to achieve, only a few experiments that harness matter-light interactions to implement two-
photon gates have been demonstrated6,7. Most existing protocols for two-photon quantum logic gates are based on
quantum interference, single-photon detection and post-selection8–19.

However, realizing high-fidelity two-photon quantum logic gates remains elusive due to the lack of perfect single-
photon sources. For example, to realize a quantum logic gate with fidelity approaching 99% using the interference-
based CNOT gate protocol, the minimum requirements on the single-photon source are g(2)(0) < 7 × 10−3 and
indistinguishability higher than 99%. To date, single-photon source that simultaneously reaches such demanding
goals on purity and indistinguishability has not been demonstrated. Physical platforms that hold the promise for
generating such near-perfect single photons include quantum dots20–23, spontaneous parametric down-conversion24–26,
spontaneous four-wave mixing27,28, nitrogen-vacancy centers29–31, neutral atoms32–43, trapped ions44–47, etc. With
a 80 ns detection window, our Rydberg single-photon source shows g(2)(0) = 4.5(8)× 10−4 and indistinguishability
of 99.94(8)%, and results in a photon-photon quantum logic gate with a high fidelity. Supplementary Table 2
summarizes the experiments that demonstrated linear-optical gates over the past two decades, and Supplementary
Figure 5 displays the achieved truth table and entangling gate infidelities on a logarithmic scale. The infidelities in
our work are suppressed by more than a order of magnitude compared to previous studies.

In the remainder of this section, we analyze the detailed implementation of the CNOT gate, and investigate the
major sources of error that affect the truth table fidelity in the experiment. As shown in Supplementary Figure 6,
the CNOT gate establishes quantum correlations between the control and target photons by interfering them at a
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No. Reference Truth table fidelity Entangling gate fidelity Intrinsic success probability Single-photon source
(1) Phys. Rev. Lett. 88, 257902 (2002)8 0.83 − 1/4 SPDC
(2) Nature 426, 264 (2003)11 0.84 0.87(8) 1/9 SPDC
(3) Phys. Rev. A 68, 032316 (2003)48 0.80 − 1/4 SPDC
(4) Phys. Rev. Lett. 93, 080502 (2004)49 0.90 0.73 1/9 SPDC
(5) Phys. Rev. Lett. 93, 240501 (2004)50 0.84 0.81 1/4 SPDC
(6) Phys. Rev. Lett. 93, 020504 (2004)51 0.79 0.81 1/16 SPDC
(7) Phys. Rev. Lett. 95, 210504 (2005)12 0.872(1) − 1/9 SPDC
(8) Phys. Rev. Lett. 95, 210506 (2005)14 0.87 − 1/9 SPDC
(9) Phys. Rev. Lett. 95, 210505 (2005)13 0.818 0.878(6) 1/9 SPDC
(10) Phys. Rev. Lett. 94, 030501 (2005)52 0.79(5) − 1/4 SPDC
(11) Phys. Rev. Lett. 98, 170502 (2007)53 0.90 − 1/8 SPDC
(12) Science 320, 646 (2008)54 0.943(2) 0.92 1/9 SPDC
(13) Phys. Rev. Lett. 100, 133603 (2008)55 0.87 0.80(2) 1/9 FWM
(14) IEEE J. Sel. Top. Quantum Electron. 15, 1685 (2009)56 0.891(3) − 1/9 FWM
(15) Proc. Natl Acad. Sci. USA 107, 20869 (2010)57 0.72(5) 0.575(27) 1/9 SPDC
(16) Nat. Commun. 2, 566 (2011)15 0.940(4) 0.939(8) 1/9 SPDC
(17) Phys. Rev. Lett. 106, 013602 (2011)58 0.95 − 1/9 SPDC
(18) Proc. Natl Acad. Sci. USA 108, 10067 (2011)59 0.88(2) − 1/16 SPDC
(19) Nat. Photon. 6, 45 (2012)60 0.873(1) 0.947(2) 1/9 SPDC
(20) Appl. Phys. Lett. 100, 211103 (2012)16 0.75 − 1/9 SPDC
(21) Nat. Nanotechnol. 8, 213 (2013)17 0.85(6) − 1/9 QDs
(22) Phys. Rev. Lett. 110, 250501 (2013)61 0.730(16) 0.710(36) 1/9 QDs
(23) Science 349, 711 (2015)62 0.930(3) 0.943(4) 1/16 SPDC
(24) Nat. Photon. 12, 534 (2018)18 0.9885(6) − 1/64 FWM
(25) npj Quantum Inf. 4, 13 (2018)63 0.838(26) 0.76(5) 1/4 SPDC
(26) Opt. Mater. Express 9, 2318 (2019)64 0.980(6) − 1/9 SPDC
(27) Phys. Rev. Lett. 126, 130501 (2021)19 0.944 0.93(3) 1/9 SPDC
(28) Phys. Rev. Lett. 126, 140501 (2021)65 0.886(21) 0.834(24) 1/8 QDs
(29) Phys. Rev. Lett. 128, 060501 (2022)66 0.89(2) 0.90(2) 1/9 SPDC
(30) This work 0.9984(3) 0.9969(4) 1/9 Rydberg

Supplementary Table 2. A quantitative comparison of linear-optical CNOT gates, to the best of our
knowledge. SPDC: spontaneous parametric down-conversion; FWM: four-wave mixing; QDs: quantum dots.

Supplementary Figure 5. A comparison of state-of-the-art truth table and entangling gate infidelities
in linear-optical quantum logic gate experiments.

partial polarization beam splitter (PPBS), which has a reflectivity of 1/3 (1) for horizontally (vertically) polarized
photons. For an input state of |HH⟩, unlike a HOM interferometer which completely eliminates |HH⟩ state at the
output, the PPBS-based photon-photon interferometer generates an output state with π-phase shift : −1/3 |HH⟩, due
to the unbalanced destructive interference caused by the partial reflection. By encoding the qubits with scheme shown
in Supplementary Table 3 and combing the controlled π-phase shift mechanism with two more PPBSs for amplitude
compensation, the two-photon CNOT gate operation can be executed11–19.
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Supplementary Figure 6. Schematic illustration of the CNOT gate apparatus. The CNOT gate
experimental setup consists of state preparation, the gate operation and the state measurement.

In order to analyze various gate errors, we model the CNOT gate protocol in detail. As shown in Supplementary
Figure 6, the gate operation transforms the input optical modes ĈH, ĈV, T̂H and T̂V to the output modes ĉH, ĉV,
t̂H and t̂V, where symbols Ĉ (T̂ ) and ĉ (t̂) represent the input and output modes of the control (target) arm, and
the subscript H (V) indicates a horizontally (vertically) polarized mode. To balance the amplitudes of the output
modes, two more PPBSs and HWPs are employed after the two-photon interference. To describe the effects of these
two PPBSs, ancillary input and output modes of ĈX

H (T̂X
H ) and ĉXH (t̂XH) are introduced. The detailed input-output

transformation is described by
ĉH
t̂H
ĉV
t̂V
ĉXH
t̂XH

 =



0 0
√

1/3 0 −
√

2/3 0

0 0 0
√

1/3 0 −
√
2/3√

1/3 −
√
2/3 0 0 0 0√

2/3
√

1/3 0 0 0 0

0 0
√

2/3 0
√

1/3 0

0 0 0
√

2/3 0
√
1/3





ĈH

T̂H
ĈV

T̂V
ĈX

H

T̂X
H


. (10)

Control Target

|0⟩ |1⟩ |0⟩ |1⟩

Input qubits ĈV −ĈH

(
T̂H + T̂V

)
/
√
2

(
T̂V − T̂H

)
/
√
2

Output qubits ĉH −ĉV
(
t̂H + t̂V

)
/
√
2

(
t̂H − t̂V

)
/
√
2

Supplementary Table 3. The encoding scheme for input and output qubits. According to the encoding
scheme in the main text, we define Ĉ0\Ĉ1 = ĈV\ − ĈH and T̂0\T̂1 = T̂D\ − T̂A = (T̂V ± T̂H)/

√
2 as the input qubits.

The output qubits are encoded as ĉ0\ĉ1 = ĉH\ − ĉV and t̂0\t̂1 = t̂D\t̂A = (t̂H ± t̂V)/
√
2.

Assisted by the non-classical interference between two indistinguishable single photons, the transformation in Sup-
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plementary Equation (10) establishes quantum correlations between the control and target photonic qubits. After the
interference, two single photons could end up in three scenarios: (i) a single photon occupies one of the control modes
and the other occupies one of the target modes, (ii) both single photons appear in the control or target modes, (iii) one
or two single photons leak to the ancillary modes. The coincidence detection events between the control and target
output qubits only occur in scenario (i). By post selecting these events, a CNOT operation on the input photons is
implemented in terms of the encoding displayed in Supplementary Table 3, and the operation can be described as

(
Ĉ†

0 T̂
†
0 Ĉ†

0 T̂
†
1 Ĉ†

1 T̂
†
0 Ĉ†

1 T̂
†
1

)
→ 1

3

(
ĉ†0t̂

†
0 ĉ†0t̂

†
1 ĉ†1t̂

†
0 ĉ†1t̂

†
1

) 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (11)

In addition to the truth table in computational ZZ basis, we also measure the truth table in complementary XX
basis, defined by |±⟩C = (|0⟩C ± |1⟩C)/

√
2 for the control qubit and |±⟩T = (|0⟩T ± |1⟩T)/

√
2 for the target qubit.

The truth table fidelities are given by FZZ
CNOT = 99.84(3)% and FXX

CNOT = 99.81(3)%. In the following, we analyze
the major sources of error that contribute to the infidelities: background detection events, single-photon impurity,
imperfect photon indistinguishability, and imperfections of optical components.

Infidelities from background detection events. One of the error contributions comes from the background
detection events, which are dominated by the SPCM dark counts. The probability of error for each combination of
input-output states are approximated to the first-order and shown in Supplementary Table 4. Several notations are
introduced to denote various probabilities in each experiment cycle. When the input state is |ij⟩, p(ij)mn represents the
probability of coincidence between photons in polarization states of |m⟩c and |n⟩t, p

(ij)
cm (p(ij)tn ) denotes the probability

of detecting a single photon in |m⟩c (|n⟩t), and p
B(ij)
cm (pB(ij)

tn ) is the background detection probability of SPCM
corresponding to output state |m⟩c (|n⟩t), where i, j,m, n = 0, 1 in ZZ basis and i, j,m, n = +,− in XX basis. We
estimate that the errors due to the background detection events add up to infidelities of ∆FZZ

bg = 0.088(4)% for ZZ
basis and ∆FXX

bg = 0.077(4)% for XX basis.
Infidelities from single-photon impurity. As a result of the single-photon impurity, there are residual multi-

photon components from our single-photon source, which also reduce the truth table fidelity. In the measurement of
truth table in ZZ basis, this error mechanism depends on the state of control qubit. When the control qubit is in
state |0⟩C, the photons from mode Ĉ0 can only end up in mode ĉ0 and do not contribute any coincidences. However,
the mode T̂j=0,1 is allowed to transform to both ĉ1 and t̂j modes. Multi-photon events in T̂j mode result in an error
in the element |0⟩C |j⟩T → |1⟩c |j⟩t of the truth table

⟨t̂†j ĉ
†
1ĉ1t̂j⟩C=0,T=j

1
9 ⟨Ĉ

†
0Ĉ0⟩C=0 ⟨T̂

†
j T̂j⟩T=j

=
⟨T̂ †
j T̂

†
j T̂j T̂j⟩T=j

⟨Ĉ†
0Ĉ0⟩C=0 ⟨T̂

†
j T̂j⟩T=j

=
ηT
ηC
g
(2)
T (0) = 6.0(17)× 10−4. (12)

Here, the factor 1/9 is the success probability of the CNOT operation (derived from Supplementary Equation (11)),
and the denominator is the probability of two-photon inputs. The ηC (ηT) is the probability of having a photon in
the control (target) arm, and ηT/ηC = 2.11(4) is measured with coherent laser light. When the control qubit is in
state |1⟩C, photons from input mode Ĉ1 go to output modes ĉ1, t̂0 and t̂1. The multi-photon components from input
mode Ĉ1 or T̂j lead to an error in the element |1⟩C |j⟩T → |1⟩c |j⟩t of the truth table

⟨t̂†j ĉ
†
1ĉ1t̂j⟩C=1,T=j

1
9 ⟨Ĉ

†
1Ĉ1⟩C=1 ⟨T̂

†
j T̂j⟩T=j

=
⟨Ĉ†

j Ĉ
†
j ĈjĈj⟩C=1

+ ⟨T̂ †
j T̂

†
j T̂j T̂j⟩T=j

⟨Ĉ†
1Ĉ1⟩C=1 ⟨T̂

†
j T̂j⟩T=j

=
ηC
ηT
g
(2)
C (0) +

ηT
ηC
g
(2)
T (0) = 7.4(21)× 10−4. (13)

Here, g(2)C (0) = g
(2)
T (0) = 2.9(8)× 10−4 is determined in Section I. Considering the gate errors in Supplementary

Equations (12) and (13), the infidelity from multi-photon components for ZZ basis is given by

∆FZZ
impurity =

ηC
2ηT

g
(2)
C (0) +

ηT
ηC
g
(2)
T (0) = 0.067(19)%. (14)

The difference between the measurements of truth tables in XX and ZZ bases is that the polarization bases of the
control and target qubits are exchanged. Thus, we can derive that the contributed infidelity for XX basis is

∆FXX
impurity =

ηC
ηT
g
(2)
C (0) +

ηT
2ηC

g
(2)
T (0) = 0.044(12)%. (15)
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ZZ basis

Output

Input
|00⟩ |01⟩ |10⟩ |11⟩

|00⟩ 0

p
(01)
c0

p
B(01)
t0

p
(01)
01

= 0.8(1)× 10−4

p
(10)
t0

p
B(10)
c0

p
(10)
11

= 1.9(3)× 10−4

p
(11)
t0

p
B(11)
c0

p
(11)
10

= 0.9(1)× 10−4

|01⟩

p
(00)
c0

p
B(00)
t1

p
(00)
00

= 1.0(2)× 10−4

0

p
(10)
t1

p
B(10)
c0

p
(10)
11

= 0.7(1)× 10−4

p
(11)
t1

p
B(11)
c0

p
(11)
10

= 2.4(4)× 10−4

|10⟩

p
(00)
c1

p
B(00)
t0

+p
(00)
t0

p
B(00)
c1

p
(00)
00

= 4.9(5)× 10−4

p
(01)
c1

p
B(01)
t0

p
(01)
01

= 1.5(3)× 10−4

p
(10)
c1

p
B(10)
t0

+p
(10)
t0

p
B(10)
c1

p
(10)
11

= 6.0(6)× 10−4

0

|11⟩

p
(00)
c1

p
B(00)
t1

p
(00)
00

= 1.8(3)× 10−4

p
(01)
c1

p
B(01)
t1

+p
(01)
t1

p
B(01)
c1

p
(01)
01

= 6.1(5)× 10−4

0

p
(11)
c1

p
B(11)
t1

+p
(11)
t1

p
B(11)
c1

p
(11)
10

= 7.4(7)× 10−4

XX basis

Output

Input
|++⟩ |+−⟩ |−+⟩ |−−⟩

|++⟩ 0

p
(+−)
c+

p
B(+−)
t+

p
(+−)
−−

= 2.4(4)× 10−4

p
(−+)
t+

p
B(−+)
c+

p
(−+)
−+

= 2.2(3)× 10−4

p
(−−)
c+

p
B(−−)
t+

p
(−−)
+−

= 1.7(3)× 10−4

|+−⟩

p
(++)
c+

p
B(++)
t−

+p
(++)
t−

p
B(++)
c+

p
(++)
++

= 1.5(2)× 10−4

p
(+−)
c+

p
B(+−)
t−

+p
(+−)
t−

p
B(+−)
c+

p
(+−)
−−

= 6.0(6)× 10−4

p
(−+)
t−

p
B(−+)
c+

p
(−+)
−+

= 0.8(1)× 10−4

0

|−+⟩

p
(++)
t+

p
B(++)
c−

p
(++)
++

= 1.8(3)× 10−4

p
(+−)
c− p

B(+−)
t+

p
(+−)
−−

= 2.1(3)× 10−4

0

p
(−−)
c− p

B(−−)
t+

p
(−−)
+−

= 2.1(4)× 10−4

|−−⟩

p
(++)
t−

p
B(++)
c−

p
(++)
++

= 0.6(1)× 10−4

0

p
(−+)
c− p

B(−+)
t−

+p
(−+)
t−

p
B(−+)
c−

p
(−+)
−+

= 2.1(2)× 10−4

p
(−−)
c− p

B(−−)
t−

+p
(−−)
t−

p
B(−−)
c−

p
(−−)
+−

= 7.5(7)× 10−4

Supplementary Table 4. Error contribution of background detection events to each element of the
truth tables for ZZ and XX bases.

Infidelities from photon distinguishability. To analyze the infidelity due to imperfect photon indistinguisha-
bility, similar to Section II, we introduce additional modes T̂ ′

j=0,1 to characterize the distinguishable components
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between the control and target photons. The target modes can be written as
√
1− ϵdT̂j +

√
ϵdT̂

′
j , where the distin-

guishability ϵd is defined in Section II. In the measurement of the truth table in ZZ basis, the two-photon interference
occurs only when the control qubit is in state |1⟩C. The existence of the distinguishable input mode T̂ ′

j deteriorates
the interference and causes an error in the element |1⟩C |j⟩T → |1⟩c |j⟩t of the truth table

9
⟨t̂†j ĉ

†
1ĉ1t̂j + t̂′†j ĉ

†
1ĉ1t̂

′
j + t̂†j ĉ

′†
1 ĉ

′
1t̂j⟩

⟨Ĉ†
1Ĉ1⟩ ⟨T̂ †

j T̂j + T̂ ′†
j T̂

′
j⟩

≈ 2ϵd = 0.0012(16), (16)

where ĉ′1 and t̂′j are the distinguishable output modes. By averaging the errors described in Supplementary Equa-
tion (16) when the control qubit is in |1⟩C and the zero errors when the control qubit is in |0⟩C, the distinguishability
contributed infidelity is given by ∆FZZ

d = ϵd = 0.06(8)%. For XX basis, this contribution is the same.
Infidelities from imperfect optical elements. We analyze the imperfections of optical components in state

preparation, gate operation and state measurement stages separately. In the state preparation stage, considering the
imperfections of HWPs and the finite resolutions of our polarization calibrations (limited by the polarimeter), ϵC
(ϵT) is introduced to characterize the polarization state error of the control (target) qubit. Therefore, we redefine the
encoding of the input qubits (see Supplementary Table 3) as

Ĉ0

T̂0
Ĉ1

T̂1

 =


ϵC
2 0 −1 0
0 1√

2

(
1 + ϵT

2

)
0 − 1√

2

(
1− ϵT

2

)
1 0 ϵC

2 0
0 1√

2

(
1− ϵT

2

)
0 1√

2

(
1 + ϵT

2

)



ĈH

T̂H
ĈV

T̂V

 . (17)

In the gate operation stage, the main imperfections come from the three PPBSs. We denote the reflectivity of each
PPBS as (1− ϵHi

)/3 for horizontally polarized components instead of the ideal value 1/3, and (1− ϵ2Vi
) for vertically

polarized components instead of 1, where i = 0 corresponds to the PPBS for two-photon interference, and i = 1, 2
correspond to the PPBSs in the control and target arms, respectively. Combining with Supplementary Equation (17),
we derive the transformation matrix of the CNOT gate approximated to the first-order as

UCNOT ≈


1− ϵH0

4 − ϵH1

2 − ϵH2

4

ϵH0

4 − ϵH2

4 + ϵT
2

ϵV0√
2
+ ϵC

2

ϵV0√
2

ϵH0

4 − ϵH2

4 − ϵT
2 1− ϵH0

4 − ϵH1

2 − ϵH2

4 − ϵV0√
2

− ϵV0√
2
+ ϵC

2
ϵV0√

2
− ϵV0√

2
− ϵC

2 − 5ϵH0

4 − ϵH2

4 − ϵT
2 1 +

3ϵH0

4 − ϵH2

4
ϵV0√

2
− ϵC

2 − ϵV0√
2

1 +
3ϵH0

4 − ϵH2

4 − 5ϵH0

4 − ϵH2

4 + ϵT
2

 . (18)

In the state measurement stage, the imperfections of HWP and PBS in the control (target) arm cause polarization
crosstalk between two output control (target) modes. The single photons in mode ĉ1−j (t̂1−j) could end up in the
SPCM corresponding to mode ĉj (t̂j) with an error probability denoted as ϵ2cj (ϵ2tj ), where j = 0, 1. The above-
mentioned imperfections contribute infidelities of

∆FZZ
optics = ϵ2V0

+
13ϵ2H0

+ 4ϵH0ϵH2 + ϵ2H2

16
+
ϵ2C + ϵ2T

4
+
ϵ2c0 + ϵ2c1 + ϵ2t0 + ϵ2t1

2
= 0.0064(1)% (19)

for ZZ basis, and

∆FXX
optics = ϵ2V0

+
13ϵ2H0

+ 4ϵH0
ϵH1

+ ϵ2H1

16
+
ϵ2C + ϵ2T

4
+
ϵ2c0 + ϵ2c1 + ϵ2t0 + ϵ2t1

2
= 0.0064(1)% (20)

for XX basis, where ϵV0 = 0.0080(1), ϵH0 = 0.0000(51), ϵH1 = 0.0000(60), ϵH2 = 0.0000(48), ϵC = 0.0000(19),
ϵT = 0.0000(23), ϵc0 = 0.0007(1), ϵc1 = 0.0004(2), ϵt0 = 0.0005(3) and ϵt1 = 0.0010(1) are measured by coherent laser
light.

Considering various truth table infidelity in ZZ (XX) basis: 0.088(4)% (0.077(4)%) from background detec-
tion events, 0.067(19)% (0.044(12)%) from single-photon impurity, 0.06(8)% from photon distinguishability and
0.0064(1)% (0.0064(1)%) from imperfect optical elements, we expect a truth table fidelity of 99.78(8)% (99.82(8)%),
for ZZ (XX) basis, which is in good agreement with the measured value of 99.84(3)% (99.81(3)%). We also
study the gate performance with 200 ns detection window and find a truth table fidelity of FZZ

CNOT = 99.53(3)%
(FXX

CNOT = 99.40(3)%). To further improve the gate fidelity, one can increase the single-photon efficiency to get a
better signal-to-background ratio, use a smaller atomic sample and higher principal quantum number to suppress
multi-photon events, and apply quantum optimal control techniques to optimize photon indistinguishability. With
these improvements, it is possible to achieve CNOT gate fidelity above 99.9% in our system.
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In our current experiment, the limitations of success probability come from the intrinsic gate efficiency, the single-
photon generation efficiency, a series of optical losses and SPCM detection efficiency. Specifically, the intrinsic efficiency
is 1/9, and the single-photon generation efficiency in the CNOT experiment is 0.27. Besides, the overall optical
transmission for the target (control) qubit is 0.25 (0.13). The detection efficiency of low-noise SPCMs is about 0.58.
Moreover, the 80 ns detection window leads to an extra photon loss of 38%. Considering the above limitations, our
gate detection success probability is about 3.3× 10−5 with an 80 ns detection window, and the success rate of the
gate is up to 100/min with a repetition rate of 50 kHz. We also study the gate performance with 200 ns detection
window and find a truth table fidelity of FZZ

CNOT = 99.53(3)% (FXX
CNOT = 99.40(3)%). The success probability and

success rate of the gate are 7.6× 10−5 and 230/min, respectively.
We emphasize that the main focus of our work is to achieve high gate fidelity, and we didn’t spend efforts on

optimizing the efficiencies. Especially, the losses in single-photon efficiency are not fundamental to our experiment
and can in principle be alleviated in the future. The single-photon generation efficiency can be further improved,
potentially to near unity by incorporating an optical resonator. In the current experiment, no serious efforts have
been spent on minimizing the optical losses, which can be alleviated by replacing the optical elements with high trans-
mission and removing some of the optical components used for switching photon paths between different experiments.
The detection efficiency can be increased by using superconducting nanowire single-photon detectors (SNSPD). The
38% photon loss from the 80 ns small detection window is caused by the imperfect interference between the photon
components in the edges. We can implement optimal control techniques to the 479 nm read-out field to compensate
the imperfect interference and achieve near-unity indistinguishability with the full single-photon wave-packet.

IV. SUPPLEMENTARY NOTE 4: ENTANGLEMENT GENERATION, QUANTUM STATE
TOMOGRAPHY AND VIOLATION OF BELL’S INEQUALITY

In this section, the quantum nature of our photon-photon gate is benchmarked by measuring the entangled state
fidelity and demonstrating the violation of Bell’s inequality. Various error mechanisms that decrease the fidelity and
Bell parameter from the ideal values are also thoroughly investigated.

The ability to generate entanglement distinguishes our quantum logic gate from its classical counterpart. The
maximally entangled Bell state |Ψ−⟩ = (|0⟩c |1⟩t − |1⟩c |0⟩t)/

√
2 is created by inputting a product state of (|0⟩C −

|1⟩C) |1⟩T /
√
2 to the CNOT gate. The fidelity of the output state ρ relative to |Ψ−⟩ is

FΨ− = ⟨Ψ−| ρ |Ψ−⟩ = 1

4
(1− ⟨σx

cσ
x
t ⟩ − ⟨σy

cσ
y
t ⟩ − ⟨σz

cσ
z
t ⟩) , (21)

where σx, σy and σz are Pauli matrices. We perform a complete quantum state tomography and apply maximum
likelihood estimation technique to reconstruct the full density matrix of the output state. The reconstructed density
matrix gives a fidelity of FΨ− = 99.69(4)%, where the standard deviation is given by a Monte Carlo method. The
near-unity value for FΨ− provides a benchmark for the fidelity of our entangling-gate operation and demonstrates the
preparation of high-quality entangled photon pairs, which are critical for a number of quantum applications.

To further verify the entanglement, a Bell’s inequality measurement is performed on the output state. Correlations
between two output photons are measured at different polarization measurement bases. At linearly polarized bases
of {cos θc |0⟩c + sin θc |1⟩c , sin θc |0⟩c − cos θc |1⟩c} for control qubit and {cos θt |0⟩t + sin θt |1⟩t , sin θt |0⟩t − cos θt |1⟩t}
for target qubit, we measure the correlation function of

E(θc, θt) =
C01(θc, θt) + C10(θc, θt)− C00(θc, θt)− C11(θc, θt)

C01(θc, θt) + C10(θc, θt) + C00(θc, θt) + C11(θc, θt)
(22)

=
p(θc, θt +

π
2 ) + p(θc +

π
2 , θt)− p(θc, θt)− p(θc +

π
2 , θt +

π
2 )

p(θc, θt) + p(θc +
π
2 , θt) + p(θc, θt +

π
2 ) + p(θc +

π
2 , θt +

π
2 )
, (23)

where Cij is the coincidence rate between SPCMs ci=0,1 and tj=0,1 in Supplementary Figure 6, and p(α, β) is the
probability of coincidences between output modes ĉα = ĉ0 cosα+ ĉ1 sinα and t̂β = t̂0 cosβ+ t̂1 sinβ. We hence obtain
the Bell parameter

S = E
(π
8
, 0
)
+ E

(π
8
,
π

4

)
+ E

(
−π
8
, 0
)
− E

(
−π
8
,
π

4

)
. (24)

With E(π/8, 0) = 0.706(6), E(π/8, π/4) = 0.714(6), E(−π/8, 0) = 0.702(6) and E(−π/8, π/4) = −0.700(6), the Bell
parameter is S = 2.823(12), which violates the Clauser-Horne-Shimony-Holt inequality |S| ≤ 2 by more than 60
standard deviations and unambiguously verifies the photon-photon entanglement created by our CNOT gate.
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To understand the reduction of the measured FΨ− (S) from its ideal value 1 (2
√
2), we thoroughly analyze major

sources of error as follows:
Effects from background detection events. Similar to the analysis in the HOM interference (see Section II) and

measurement of truth tables (see Section III), coincidences between single-photon events and background detection
events (mainly caused by the SPCM dark counts) increase the coincidence rates between four SPCMs. These back-
ground detection events change the values of ⟨σx

cσ
x
t ⟩, ⟨σy

cσ
y
t ⟩ and ⟨σz

cσ
z
t ⟩ by 0.00159(9), 0.00169(9) and 0.00165(10),

and E(π/8, 0), E(π/8, π/4), E(−π/8, 0) and E(−π/8, π/4) by -0.00090(9), -0.00094(8), -0.00099(7) and 0.00139(8),
which cause a decrease of FΨ− by ∆FΨ−

bg = 0.123(4)%, and S by ∆Sbg = 0.00422(16).
Effects from single-photon impurity. For the occupied input modes (Ĉ0 − Ĉ1)/

√
2 = ĈD and T̂1 = −T̂A, the

multi-photon events increase second-order correlations ⟨Ĉ†
DĈ

†
DĈDĈD⟩ and ⟨T̂ †

AT̂
†
AT̂AT̂A⟩ from the ideal value of zero.

We estimate the impact of these non-zero correlations by calculating

p(α, β) = ⟨ĉ†αt̂
†
β t̂β ĉα⟩ =

1

9

[
⟨Ĉ†

DĈD⟩ ⟨T̂ †
AT̂A⟩

sin2(α− β)

2
+ (25)

⟨Ĉ†
DĈ

†
DĈDĈD⟩ cos2

(
α+

π

4

)
cos2

(
β +

π

4

)
+ ⟨T̂ †

AT̂
†
AT̂AT̂A⟩ sin

2 α sin2 β
]
,

p(L\R,L\R) = ⟨ĉ†L\Rt̂
†
L\Rt̂L\RĉL\R⟩ =

1

36

(
⟨Ĉ†

DĈ
†
DĈDĈD⟩+ ⟨T̂ †

AT̂
†
AT̂AT̂A⟩

)
, (26)

p(L\R,R\L) = ⟨ĉ†L\Rt̂
†
R\Lt̂R\LĉL\R⟩ =

1

36

(
⟨Ĉ†

DĈ
†
DĈDĈD⟩+ ⟨T̂ †

AT̂
†
AT̂AT̂A⟩+ 2 ⟨Ĉ†

DĈD⟩ ⟨T̂ †
AT̂A⟩

)
, (27)

where ĉL\R = (ĉ0 ∓ iĉ1)/
√
2 and t̂L\R = (t̂0 ∓ it̂1)/

√
2. We then derive

E(θc, θt) =
⟨Ĉ†

DĈD⟩ ⟨T̂ †
AT̂A⟩ cos 2(θc − θt)− ⟨Ĉ†

DĈ
†
DĈDĈD⟩ sin 2θc sin 2θt − ⟨T̂ †

AT̂
†
AT̂AT̂A⟩ cos 2θc cos 2θt

⟨Ĉ†
DĈD⟩ ⟨T̂ †

AT̂A⟩+ ⟨Ĉ†
DĈ

†
DĈDĈD⟩+ ⟨T̂ †

AT̂
†
AT̂AT̂A⟩

, (28)

1 + ⟨σx
cσ

x
t ⟩ =1− E

(π
4
,
π

4

)
= 2

ηC
ηT
g
(2)
C (0) +

ηT
ηC
g
(2)
T (0) = 0.00088(25), (29)

1 + ⟨σy
cσ

y
t ⟩ =1 +

p(L,L)− p(L,R)− p(R,L) + p(R,R)

p(L,L) + p(L,R) + p(R,L) + p(R,R)
=
ηC
ηT
g
(2)
C (0) +

ηT
ηC
g
(2)
T (0) = 0.00074(21), (30)

1 + ⟨σz
cσ

z
t ⟩ =1− E(0, 0) =

ηC
ηT
g
(2)
C (0) + 2

ηT
ηC
g
(2)
T (0) = 0.00134(38), (31)

from which we determine the reduction of Bell parameter and the infidelity of Bell state contributed by the multi-
photon events

∆FΨ−

impurity ≈ηC
ηT
g
(2)
C (0) +

ηT
ηC
g
(2)
T (0) = 0.074(21)%, (32)

∆Simpurity ≈3
√
2

(
ηC
ηT
g
(2)
C (0) +

ηT
ηC
g
(2)
T (0)

)
= 0.0031(9), (33)

where g(2)C (0) = g
(2)
T (0) = 2.9(8)× 10−4 is determined in the HBT experiment as shown in Section I, and ηT/ηC =

2.11(4) is given in Section III.
Effects from photon distinguishability. We characterize the photon indistinguishability using the same method

as in Section III. By tracing the impact of distinguishable input mode T̂ ′
A = −T̂ ′

1 on the correlations

p(α, β) ≈⟨ĉ†αt̂
†
β t̂β ĉα⟩+ ⟨ĉ†αt̂

′†
β t̂

′
β ĉα⟩+ ⟨ĉ′†α t̂

†
β t̂β ĉ

′
α⟩ (34)

=
1

9
⟨Ĉ†

DĈD⟩
[
⟨T̂ †

AT̂A⟩
sin2(α− β)

2
+ ⟨T̂ ′†

A T̂
′
A⟩

(
sin2 α cos2

(
β +

π

4

)
+ cos2

(
α+

π

4

)
sin2 β

)]
,

p(L\R,L\R) ≈⟨ĉ†L\Rt̂
†
L\Rt̂L\RĉL\R⟩+ ⟨ĉ†L\Rt̂

′†
L\Rt̂

′
L\RĉL\R⟩+ ⟨ĉ′†L\Rt̂

†
L\Rt̂L\Rĉ

′
L\R⟩ =

1

18
⟨Ĉ†

DĈD⟩ ⟨T̂ ′†
A T̂

′
A⟩ , (35)

p(L\R,R\L) ≈⟨ĉ†L\Rt̂
†
R\Lt̂R\LĉL\R⟩+ ⟨ĉ†L\Rt̂

′†
R\Lt̂

′
R\LĉL\R⟩+ ⟨ĉ′†L\Rt̂

†
R\Lt̂R\Lĉ

′
L\R⟩ (36)

=
1

18
⟨Ĉ†

DĈD⟩
(
⟨T̂ †

AT̂A⟩+ ⟨T̂ ′†
A T̂

′
A⟩

)
,
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where ĉ′ and t̂′ represent the distinguishable output modes, we derive

E(θc, θt) ≈
cos 2(θc − θt) ⟨T̂ †

AT̂A⟩ − sin 2(θc + θt) ⟨T̂ ′†
A T̂

′
A⟩

⟨T̂ †
AT̂A⟩+ 2 ⟨T̂ ′†

A T̂
′
A⟩

, (37)

1 + ⟨σx
cσ

x
t ⟩ =1− E

(π
4
,
π

4

)
≈ 2ϵd = 0.0012(16), (38)

1 + ⟨σy
cσ

y
t ⟩ ≈1−

⟨T̂ †
AT̂A⟩

⟨T̂ †
AT̂A⟩+ 2 ⟨T̂ ′†

A T̂
′
A⟩

≈ 2ϵd = 0.0012(16), (39)

1 + ⟨σz
cσ

z
t ⟩ =1− E(0, 0) ≈ 2ϵd = 0.0012(16), (40)

and furthermore the reduction of Bell parameter and the infidelity of Bell state are given by

∆FΨ−

d ≈3

2
ϵd = 0.09(12)%, (41)

∆Sd ≈4
√
2ϵd = 0.0033(44), (42)

where the distinguishability ϵd = 0.06(8)% is determined in the HOM interference experiment as shown in Section II.
Effects from imperfect optical components. The imperfections of optical components in the state preparation

and gate-operation stage are fully characterized in Supplementary Equation (18). The imperfect operation UCNOT

transforms the perfectly defined input state (|0⟩C − |1⟩C) |1⟩T /
√
2 to a flawed output state

UCNOT√
2

 0
1
0
−1

 ≈ 1√
2


ϵH0

4 − ϵH2

4 − ϵV0√
2
+ ϵT

2

1− ϵH0

4 − ϵH1

2 − ϵH2

4 +
ϵV0√

2
− ϵC

2

−1− 3ϵH0

4 +
ϵH2

4 − ϵV0√
2
− ϵC

2
5ϵH0

4 +
ϵH2

4 − ϵV0√
2
− ϵT

2

 , (43)

which can be rewritten as |Ψ−⟩+ ϵ+ |Φ+⟩+ ϵ− |Φ−⟩+ ϵΨ |ψ+⟩ in terms of Bell basis. For this output, again, we first
calculate the correlations

p(α, β) ≈ 1

18
[sin(α− β)− cos(α− β)ϵ+ − cos(α+ β)ϵ− − sin(α+ β)ϵψ]

2
, (44)

p(L\R,L\R) ≈ 1

18

(
ϵ2− + ϵ2ψ

)
, (45)

p(L\R,R\L) ≈ 1

18
(1 + ϵ2+), (46)

where ϵ+ ≈ 3ϵH0
/4− ϵV0

/
√
2 = −0.0056(38), ϵ− ≈ −ϵH0

/2− ϵH2
/4 + ϵT/2 = 0.0000(31) and ϵψ ≈ −ϵH0

/2− ϵH1
/4−

ϵC/2 = 0.0000(31). Considering the second-order effect of polarization crosstalk, we have

∆FΨ−

optics ≈ϵ2+ + ϵ2− + ϵ2ψ +
3

4

(
ϵ2c0 + ϵ2c1 + ϵ2t0 + ϵ2t1

)
≈ 0.003(4)% (47)

∆Soptics ≈2
√
2
(
2ϵ2+ + ϵ2− + ϵ2ψ + ϵ2c0 + ϵ2c1 + ϵ2t0 + ϵ2t1

)
= 0.00018(24). (48)

In summary, background detection events, single-photon impurity, photon distinguishability and imperfect optical
elements reduce the state fidelity FΨ− (Bell parameter S) from its ideal value by 0.123(4)% (0.00422(16)), 0.074(21)%
(0.0031(9)), 0.09(12)% (0.0033(44)) and 0.003(4)% (0.00018(24)), respectively. Considering the above-mentioned
effects, we expect a value of 99.71(12)% (2.818(5)) for FΨ− (S), which is in good agreement with the measured value
of 99.69(4)% (2.823(12)).

V. SUPPLEMENTARY NOTE 5: POTENTIAL APPLICATIONS

We demonstrate a near-optimal Rydberg atom single-photon source and realize a two-photon quantum logic gate
with a high fidelity. Our results provide potential applications in photonic quantum information processing and
distributed matter-light quantum architectures, as schematically shown in Supplementary Figure 7.
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Supplementary Figure 7. Potential applications of Rydberg single-photon source and two-photon
logic gate. (a) Build a three-dimensional cluster state that allows for fault-tolerant photonic quantum computing
by using entangled photon pairs and single photons as resources. (b) Realize all-optical quantum repeaters by
generating photonic cluster states using single photons and entangled photon pairs. (c) Inject single photons from
Rydberg atoms into an integrated photonic chip to realize large-scale photonic quantum information processing. (d)
Interconnect two Rydberg quantum modules using an entangled photon pair, with one of the single photons being
stored in a module and the other being applied an atom-photon gate.

Measurement-based (or one-way) photonic quantum computing2,67–69, which requires a large cluster-state as re-
source70, is one of the most promising approaches to realize linear optical quantum computation. However, the main
hindrance of the measurement-based photonic quantum computation is to efficiently generate high-fidelity cluster
states. Our Rydberg single-photon source and demonstrated entangling gates provide a potential way to overcome
this challenge. A collection of high-fidelity entangled Bell states, which are locally equivalent to two-qubit cluster
states, can be used to generate a large cluster state by sequentially applying the fusion gates. Furthermore, the success
probability of the fusion gate can be boosted by adding more ancillary single photons71. As an example, a three-
dimensional cubic cluster state that allows for fault-tolerant photonic quantum computation72,73 can be generated
based on our system.

Achieving long-distance quantum communication74,75 is very challenging. Due to the photon loss, the efficiency
of quantum communication decreases exponentially with the communication distance. Quantum repeaters are thus
introduced to beat the exponential scaling with the distance76. In the standard paradigm, a quantum repeater re-
quires a quantum memory with a sufficiently long coherence time76. Alternatively, an all-optical quantum repeater
circumvents the need for matter quantum memories by employing optical cluster states and single-qubit measure-
ments4. Proof-of-principle experimental demonstrations of all-optical quantum repeaters have been realized using
single photons prepared by spontaneous parametric down-conversion5,77 and solid-state quantum emitters78. Our
device can generate on-demand single photons and high-quality entangled photon pairs, which are building blocks for
optical cluster states. Therefore, our Rydberg atom single-photon source and photon-photon gate play a central role
in an all-optical quantum repeater and would be a key ingredient of the quantum internet.

A photonic chip provides a stable platform which can integrate a large number of reconfigurable optical compo-
nents54,60,62,79,80. It is in principle possible to integrate all constituent parts that are required for photonic quantum
information processing in a single chip27,80–83, including single-photon sources, linear optical circuits and photon detec-
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tors. However, it is challenging to maintain the performances of all constituent parts when combining them together.
Given that Rydberg atoms can generate near-perfect single photons, it is natural to envision a new architecture which
connects our Rydberg single-photon sources with a photonic chip, allowing for multi-photon quantum interference
with high visibility. Near-future techniques will potentially enhance the single photon generation efficiency of Rydberg
atoms to a level that enables large-scale quantum information processing on photonic chips.

The state-of-the-art quantum module consists of a relatively small number of matter qubits84–86 (superconducting
qubits, ion qubits, etc.) that can be precisely manipulated and mutually coupled via high-fidelity entangling gates.
Increasing the number of qubits in a single quantum module would degrade the performance of the gate operations87.
One potential solution is to connect many quantum modules using photons as intermediaries. Quantum correlations
(logic gates) between quantum modules can be established (implemented) by either detecting photons emitted from
two quantum modules87, coupling a single photon sequentially with two quantum modules88, or teleporting quantum
gate using previously shared entanglement89. The overall performance of the quantum network relies critically on the
quality of the single photons or entangled photon pairs. Our device therefore enables near-perfect interconnections
between quantum modules and reduces the overall error rates of quantum networks90.

Supplementary References
1 Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52

(2001).
2 Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).
3 O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).
4 Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).
5 Li, Z.-D. et al. Experimental quantum repeater without quantum memory. Nat. Photon. 13, 644–648 (2019).
6 Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon-photon quantum gate based on a single atom in an optical resonator.

Nature 536, 193–196 (2016).
7 Tiarks, D., Schmidt-Eberle, S., Stolz, T., Rempe, G. & Dürr, S. A photon-photon quantum gate based on Rydberg

interactions. Nat. Phys. 15, 124–126 (2019).
8 Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of nondeterministic quantum logic operations using linear

optical elements. Phys. Rev. Lett. 88, 257902 (2002).
9 Resch, K. J., Lundeen, J. S. & Steinberg, A. M. Conditional-phase switch at the single-photon level. Phys. Rev. Lett. 89,

037904 (2002).
10 Franson, J. D., Jacobs, B. C. & Pittman, T. B. Experimental demonstration of quantum logic operations using linear optical

elements. Fortschr. Phys. 51, 369–378 (2003).
11 O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-

NOT gate. Nature 426, 264–267 (2003).
12 Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett.

95, 210504 (2005).
13 Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made simple. Phys. Rev.

Lett. 95, 210505 (2005).
14 Okamoto, R., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Demonstration of an optical quantum controlled-NOT gate without

path interference. Phys. Rev. Lett. 95, 210506 (2005).
15 Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011).
16 Pooley, M. A. et al. Controlled-NOT gate operating with single photons. Appl. Phys. Lett. 100, 211103 (2012).
17 He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8,

213–217 (2013).
18 Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12,

534–539 (2018).
19 Zhang, M. et al. Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett. 126, 130501 (2021).
20 Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).
21 Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly

driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).
22 Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
23 Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett.

112, 093106 (2018).
24 Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
25 Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein-Podolsky-Rosen paradox using

momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403
(2004).

26 Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs
from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).



17

27 Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).
28 Yan, Z. et al. Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed

femtosecond laser-written waveguide. Appl. Phys. Lett. 107, 231106 (2015).
29 Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
30 Shalaginov, M. Y. et al. Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic

metamaterial. Laser Photon. Rev. 9, 120–127 (2015).
31 Dréau, A., Tchebotareva, A., El Mahdaoui, A., Bonato, C. & Hanson, R. Quantum frequency conversion of single photons

from a nitrogen-vacancy center in diamond to telecommunication wavelengths. Phys. Rev. Appl. 9, 064031 (2018).
32 McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994

(2004).
33 Thompson, J. K., Simon, J., Loh, H. & Vuletić, V. A high-brightness source of narrowband, identical-photon pairs. Science

313, 74–77 (2006).
34 Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).
35 Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60

(2012).
36 Mücke, M. et al. Generation of single photons from an atom-cavity system. Phys. Rev. A 87, 063805 (2013).
37 Maxwell, D. et al. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett. 110, 103001 (2013).
38 Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901

(2014).
39 Padrón-Brito, A., Lowinski, J., Farrera, P., Theophilo, K. & de Riedmatten, H. Probing the indistinguishability of single

photons generated by Rydberg atomic ensembles. Preprint at https://arxiv.org/abs/2011.06901 (2020).
40 Ripka, F., Kübler, H., Löw, R. & Pfau, T. A room-temperature single-photon source based on strongly interacting Rydberg

atoms. Science 362, 446–449 (2018).
41 Petrosyan, D. & Mølmer, K. Deterministic free-space source of single photons using Rydberg atoms. Phys. Rev. Lett. 121,

123605 (2018).
42 Li, J. et al. Semideterministic entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett. 123, 140504

(2019).
43 Ornelas-Huerta, D. P. et al. On-demand indistinguishable single photons from an efficient and pure source based on a

Rydberg ensemble. Optica 7, 813–819 (2020).
44 Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled

waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).
45 Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538–541 (2007).
46 Crocker, C. et al. High purity single photons entangled with an atomic qubit. Opt. Express 27, 28143–28149 (2019).
47 Meraner, M. et al. Indistinguishable photons from a trapped-ion quantum network node. Phys. Rev. A 102, 052614 (2020).
48 Pittman, T., Fitch, M., Jacobs, B. & Franson, J. Experimental controlled-not logic gate for single photons in the coincidence

basis. Phys. Rev. A 68, 032316 (2003).
49 O’Brien, J. L. et al. Quantum process tomography of a controlled-not gate. Phys. Rev. Lett. 93, 080502 (2004).
50 Huang, Y.-F., Ren, X.-F., Zhang, Y.-S., Duan, L.-M. & Guo, G.-C. Experimental teleportation of a quantum controlled-not

gate. Phys. Rev. Lett. 93, 240501 (2004).
51 Gasparoni, S., Pan, J.-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-not gate sufficient

for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).
52 Zhao, Z. et al. Experimental demonstration of a nondestructive controlled-not quantum gate for two independent photon

qubits. Phys. Rev. Lett. 94, 030501 (2005).
53 Bao, X.-H. et al. Optical nondestructive controlled-not gate without using entangled photons. Phys. Rev. Lett. 98, 170502

(2007).
54 Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320,

646–649 (2008).
55 Chen, J. et al. Demonstration of a quantum controlled-not gate in the telecommunications band. Phys. Rev. Lett. 100,

133603 (2008).
56 Patel, M., Altepeter, J. B., Hall, M. A., Medic, M. & Kumar, P. Experimental characterization of a telecommunications-band

quantum controlled-not gate. IEEE J. Sel. Top. Quantum Electron. 15, 1685–1693 (2009).
57 Gao, W.-B. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci.

USA 107, 20869–20874 (2010).
58 Lemr, K. et al. Experimental implementation of the optimal linear-optical controlled phase gate. Phys. Rev. Lett. 106,

013602 (2011).
59 Okamoto, R., O’Brien, J. L., Hofmann, H. F. & Takeuchi, S. Realization of a knill-laflamme-milburn controlled-not photonic

quantum circuit combining effective optical nonlinearities. Proc. Natl Acad. Sci. USA 108, 10067–10071 (2011).
60 Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic

circuit. Nat. Photon. 6, 45–49 (2012).
61 Gazzano, O. et al. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys.

Rev. Lett. 110, 250501 (2013).
62 Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
63 Zeuner, J. et al. Integrated-optics heralded controlled-not gate for polarization-encoded qubits. npj Quantum Inf. 4, 1–7

(2018).



18

64 Zhang, Q. et al. Femtosecond laser direct writing of an integrated path-encoded cnot quantum gate. Opt. Mater. Express
9, 2318–2326 (2019).

65 Li, J.-P. et al. Heralded nondestructive quantum entangling gate with single-photon sources. Phys. Rev. Lett. 126, 140501
(2021).

66 Feng, L.-T. et al. Transverse mode-encoded quantum gate on a silicon photonic chip. Phys. Rev. Lett. 128, 060501 (2022).
67 Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).
68 Bombin, H. et al. Interleaving: modular architectures for fault-tolerant photonic quantum computing. Preprint at

https://arxiv.org/abs/2103.08612 (2021).
69 Bartolucci, S. et al. Fusion-based quantum computation. Preprint at https://arxiv.org/abs/2101.09310 (2021).
70 Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A

68, 022312 (2003).
71 Ewert, F. & van Loock, P. 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev.

Lett. 113, 140403 (2014).
72 Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev.

Lett. 98, 190504 (2007).
73 Raussendorf, R., Harrington, J. & Goyal, K. Topological fault-tolerance in cluster state quantum computation. New J.

Phys. 9, 199 (2007).
74 Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).
75 Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
76 Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics.

Rev. Mod. Phys. 83, 33–80 (2011).
77 Hasegawa, Y. et al. Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters. Nat.

Commun. 10, 378 (2019).
78 Buterakos, D., Barnes, E. & Economou, S. E. Deterministic generation of all-photonic quantum repeaters from solid-state

emitters. Phys. Rev. X 7, 041023 (2017).
79 Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
80 Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284

(2020).
81 Gerrits, T. et al. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information

processing. Phys. Rev. A 84, 060301 (2011).
82 Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic

circuits. Nat. Commun. 3, 1325 (2012).
83 Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113,

093603 (2014).
84 Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66

(2016).
85 Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551,

601–604 (2017).
86 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
87 Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects.

Phys. Rev. A 89, 022317 (2014).
88 Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614–617 (2021).
89 Wan, Y. et al. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 875–878

(2019).
90 Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).


	 Supplementary Information:  High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source 
	Contents
	Supplementary Note 1: Single-photon efficiency and purity
	Supplementary Note 2: Single-Photon indistinguishability
	Supplementary Note 3: High fidelity photon-photon quantum logic gate
	Supplementary Note 4: Entanglement generation, quantum state tomography and violation of Bell's inequality
	Supplementary Note 5: Potential applications
	References


